Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Understanding the depolarization of ferroelectric materials caused by external stimuli is critical for maintaining the aligned polarization states. Although thermal depolarization in poled materials is well established, the mechanisms of electric field-induced depolarization remain largely unexplored. In this study, we investigate the electrical depoling behavior of [001]-oriented rhombohedral Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) single crystals poled using direct current poling (DCP) and alternating current poling (ACP). We reveal that the ACP sample exhibits a lower reverse coercive field than the DCP specimen. We compare the effects of bipolar and unipolar electric fields applied in the reverse poling direction, analyzing the changes in permittivity and piezoelectric resonance. Piezoresponse force microscopy is employed to characterize domain configurations in poled and electrically depoled samples. Our findings suggest that property degradation may arise from the nucleation and growth of domains oriented opposite to the initial arrangement.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Abstract Bio-inspired, micro/nanotextured surfaces have a variety of applications including superhydrophobicity, self-cleaning, anti-icing, antibiofouling, and drag reduction. In this paper, a template-free and scalable roll coating process is studied for fabrication of micro/nanoscale topographies surfaces. These micro/nanoscale structures are generated with viscoelastic polymer nanocomposites and derived by controlling ribbing instabilities in forward roll coating. The relationship between process conditions and surface topography is studied in terms of shear rate, capillary number, and surface roughness parameters (e.g., Wenzel factor and the density of peaks). For a given shear rate, the sample roughness increased with a higher capillary number until a threshold point. Similarly, for a given capillary number, the roughness increased up to a threshold range associated with shear rate. A peak density coefficient (PDC) model is proposed to relate capillary number and shear rate to surface roughness. The optimum range of the shear rate and the capillary number was found to be 40–60 s−1 and 4.5 × 105–6 × 105, respectively. This resulted in a maximum Wenzel roughness factor of 1.91, a peak density of 3.94 × 104 (1/mm2), and a water contact angle (WCA) of 128 deg.more » « less
An official website of the United States government
